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Isospin quantum number of D+
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The D+
s

π0 and D∗+
s

γ decays of the D+

s0(2317) are studied under the vector-meson dominance
hypothesis. Its assignment to the four-quark meson with (I, I3) = (1, 0) is consistent with experi-
mental data on these decays, while those to I = 0 states (a four-quark and a conventional {cs̄}) are
not favored.

PACS numbers: 14.40.Lb

Recently, a narrow D+
s π

0 resonance with the mass
≃ 2317 MeV has been observed [1, 2], and its assign-
ments to various states have been proposed [3, 4, 5, 6]
in addition to the ordinary scalar {cs̄} [7] which is the
chiral partner of D+

s [8], prior to the observation. How-
ever, its isospin quantum number seems to be still not
definite. In this short note, therefore, we will study the
D+
s0(2317) → D∗+

s γ and D+
s π

0 decays, and demonstrate
that the severest experimental constraint on the ratio of
the rates [2],

Γ(D+
s0(2317) → D∗+

s γ)

Γ(D+
s0(2317) → D+

s π0)
< 0.052, (1)

can be satisfied easily, if the D+
s0(2317) is assigned to

the scalar four-quark meson with (I, I3) = (1, 0), F̂+
I ∼

[cn][s̄n̄]I=1 (n = u, d). It is hard to reconcile the as-
signment to an I = 0 state (the conventional scalar

{cs̄} or the scalar four-quark, F̂+
0 ∼ [cn][s̄n̄]I=0) with

Eq. (1), where the square brackets imply that the wave-
functions are anti-symmetric under exchange of the fla-
vors between them (see Ref. [4] about detailed notation of
four-quark mesons). The possible existence of such four-
quark states has been also suggested for the light-flavor

mesons (the nonet of [qq][q̄q̄]: δ̂s, σ̂s, σ̂, κ̂) [9], which
would correspond to the observed scalar mesons [10],
a0(980), f0(980), σ(600) and κ(800) [11], respectively.

If the D+
s0(2317) is assigned to the F̂+

I , its decay into
the D+

s π
0 can proceed through the isospin-conserving

strong interactions. As a result, the rate is expected to
be much larger than that of the radiative F̂+

I → D∗+
s γ

decay, and thus the constraint (1) can be quite naturally
satisfied. The origin of its narrow width can be under-
stood by small overlapping of wave-functions with respect
to the color and spin [5]. It will be seen more explicitly

below. The amplitude for the main decay, F̂+
I → D+

s π
0,

can be approximated in the form,

M(F̂+
I → D+

s π
0) ≃

(

m2

F̂I

−m2
Ds

fπ0

)

〈D+
s |Aπ0 |F̂+

I 〉, (2)

by using a hard pion technique with the PCAC in the
infinite momentum frame (IMF) [12, 13], where Aπ is

the axial counterpart of the isospin I and fπ0 the decay
constant of π0. Then, the decay rate is defined as

Γ(F̂+
I → D+

s π
0) =

qc
∑

spin |M(F̂+
I → D+

s π
0)|2

8π(2JA + 1)m2

F̂I

(3)

with JA and qc being the spin of F̂+
I and the center-

of-mass momentum of the final mesons, respectively,
and the summation is taken for all spin states. The
asymptotic matrix element of Aπ (matrix element of Aπ
taken between single hadron states with infinite momen-
tum), 〈B|Aπ|A〉, gives the dimensionless ABπ coupling

strength. Here we compare the F̂+
I → D+

s π
0 with the

δ̂s+ → ηπ+ by using the asymptotic SUf (4) symmetry
(roughly speaking, SUf(4) symmetry of the asymptotic

matrix elements) [13]. The amplitude for the δ̂s+ → ηπ+

is obtained by replacing (F̂+
I , D+

s , π0) by (δ̂s+, η, π+)
in Eq. (2). Taking the usual η-η′ mixing [10], we ob-
tain η = cosΘ · ηn − sinΘ · ηs, where ηn and ηs are
the {nn̄} and {ss̄} components of η, respectively, and

Θ = χ + θP with cosχ = 1/
√

3 and the η-η′ mixing an-
gle θP ≃ −20◦. Since only the ηs component survives

in the matrix element, 〈η|Aπ− |δ̂s+〉, due to the OZI rule,

we have 〈η|Aπ− |δ̂s+〉 = − sinΘ · 〈ηs|Aπ− |δ̂s+〉. A naive

application of the asymptotic SUf (4) symmetry leads to√
2〈D+

s |Aπ0 |F̂+
I 〉 = 〈ηs|Aπ− |δ̂s+〉. This estimation would

be, however, too naive by the following two reasons: (i)
The asymptotic SUf (4) symmetry would overestimate by
about 20 % the size of asymptotic matrix elements in-
volving a charmed meson state [6]. (ii) In the color and

spin spaces, the crossing matrices of F̂+
I ∼ |[cn]1

3̄c

[s̄n̄]1
3c

〉
with the specific color-singlet state composed of color-
and spin-less {qq̄} pairs, |{qq̄}1

1c

{qq̄}1

1c

〉, is much smaller
than one [9]. Here the sub- and super-scripts denote color
and spin multiplets, respectively. However, this is not

true for the light four-quark mesons as the δ̂s+ (at lower
energy scale), because soft-gluon exchanges in the sys-
tem reshuffle such a specific color-singlet state and cause
a configuration mixing. As a result, the crossing matri-

ces with the δ̂s+ approach one. Therefore, we modify
the prior asymptotic SUf (4) relations by introducing a
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parameter

β =

√
2〈D+

s |Aπ0 |F̂+
I 〉

〈ηs|Aπ− |δ̂s+〉
. (4)

In the naive limit of the asymptotic SUf (4) symmetry,
β = 1 as seen above. We hereafter call the case of β 6= 1
the modified asymptotic SUf(4) symmetry. For simplic-
ity, we consider the limiting case that there is no configu-
ration mixing for the F̂+

I , while there is no suppression of

the crossing matrices for the δ̂s+ (a maximum mixing of
the color and spin configurations), i.e., |β|2 = 1

12
[9]. In-

serting |〈ηs|Aπ− |δ̂s+〉| ∼ 0.8 obtained from the tentative
value, Γ(a0 → ηπ+)exp ≃ 70 MeV (the measured rate is
50 ∼ 100 MeV [10]), we obtain

Γ(F̂+
I → D+

s π
0) ∼ 9 MeV. (5)

Here the observed a0(980) has been assigned to the δ̂s

and |β|2 = 1
12

has been taken. This result is a little

larger than the measured width of the D+
s0(2317) [1, 2]

but still compatible with the data if the SUf (4) symme-
try breaking is taken into account as mentioned in (i)
above.

When the D+
s0(2317) is assigned to an I = 0 state (the

scalar {cs̄} or the F̂+
0 ), however, it is difficult to recon-

cile with Eq. (1), since isospin violating phenomena, e.g.,
the difference of d-u quark masses, ∆mπ = mπ± −mπ0 ,
∆mK = mK0 −mK+ , etc., have been considered as the
second order effects of QED [14] and the π0-η mixing [15]
could be also of the same origin. Therefore, the isospin
non-conserving decay of D+

s0(2317) → D+
s π

0, which is as-
sumed to proceed through the π0-η mixing, is expected
to be (much) weaker than the radiative decay in contrast
with the arguments based on specific models [16].

Before discussing isospin non-conserving decays of the
D∗+
s and D+

s0(2317) into D+
s π

0, we first investigate
their radiative decays under the vector-meson dominance
(VMD) hypothesis [17] with the flavor SUf(4) symmetry
for the strong vertices and next compare the results with
those of the D+

s π
0 decays. Since the VMD with the ideal

ω-φ mixing and the flavor SUf(3) for the strong vertices
works fairly well in the radiative decays of light vector-
mesons [18], we will extend it to the system containing
charm quarks below. The V → Pγ amplitude can be
written in the form,

M(V → Pγ) = ǫµναβGµν(V )Fαβ(γ)A(V → Pγ), (6)

where V , P and A(V → Pγ) denote a vector meson, a
pseudoscalar meson and the V Pγ coupling strength, re-
spectively, and Gµν(V ) and Fαβ(γ) are the field strengths
of a vector meson (V ) and a photon (γ), respectively. Un-
der the VMD, the A(V → Pγ) can be approximated by

A(V → Pγ) ≃
∑

V ′=ρ0, ω, φ, ψ

[

XV ′(0)

m2
V ′

]

A(V → PV ′), (7)

where XV (0) is the γV coupling strength on the pho-
ton mass-shell. (The photon-momentum-square depen-
dence of XV has been studied in Ref. [18].) The values of
XV (0)’s have been estimated from the analyses in photo-
productions of vector mesons on various nuclei [19]. For
the ψ photoproduction, both the measured differential
cross section at t = 0 and the ψN total cross section es-
timated from the A-dependence of photoproduction cross
sections still have large uncertainties, where N denotes
a nucleon. The results are Xρ(0) = 0.033 ± 0.003 GeV2,
Xω(0) = 0.011 ± 0.001 GeV2, Xφ(0) = −0.018 ± 0.004
GeV2 and Xψ(0) ∼ 0.054 GeV2, where the last one
has been obtained from dσ(γN → ψN)/dt|t=0 ≃ 20
nb/GeV2 and σT (ψN) = 3.5±0.8 mb [20] for the ψNtotal
cross section. The values of Xφ(0) and Xψ(0) are con-
siderably lower than those of Xφ(m

2
φ) and Xψ(m2

ψ) esti-
mated from the measured rates for the lepton-pair decays
of φ and ψ, respectively. The V PV ′ coupling strength
can be estimated from the measured rate for the ω → π0γ
decay: putting (V, P, V ′) = (ω, π0, ρ0) in Eq. (7) and in-
serting the above value of Xρ(0), we have

|A(ω → π0ρ0)| ≃ 18 GeV−1, (8)

where we have used Γ(ω → π0γ)exp = 0.734 ± 0.035
MeV [10].

To estimate uncertainties arising from the VMD and
the SUf(4) symmetry for V PV ′ vertices, we focus on the
D∗ → Dγ decays. The amplitudes, A(D∗ → Dγ)’s, are
given by the ρ0, ω and ψ-meson poles. Using the SUf(4)
relations, 2A(D∗0 → D0ρ0) = 2A(D∗0 → D0ω) =√

2A(D∗0 → D0ψ) = −2A(D∗+ → D+ρ0) = 2A(D∗+ →
D+ω) =

√
2A(D∗+ → D+ψ) =

√
2A(D∗0 → D0ψ) =

A(ω → π0ρ0), and Eq. (8), we obtain Γ(D∗+ → D+γ) ∼
2.4 keV and Γ(D∗0 → D0γ) ∼ 19 keV. The former is com-
patible with the measured Γ(D∗+ → D+γ)exp ≃ 1.5 keV
(with ∼ 30 % errors) by taking account of the SUf(4)
symmetry breaking and the latter satisfies Γ(D∗0 →
D0γ)exp < 800 keV [10].

Here for later discussion, we consider the D∗+
s → D+

s γ
decay to compare the result with the D∗+

s → D+
s π

0.
The amplitude is given by φ and ψ-meson poles. Us-
ing the SUf(4) symmetry relations, A(D∗+

s → D+
s φ) =

A(D∗+
s → D+

s ψ) =
√

1
2
A(ω → π0ρ0), and Eq. (8), we

get

Γ(D∗+
s → D+

s γ) ∼ 0.8 keV, (9)

which satisfies Γ(D∗+
s → D+

s γ)exp < 1.8 MeV [10].
Similarly, the amplitude for the radiative decay of

scalar mesons, S → V γ, can be written in the form,

M(S → V γ) = Gµν(V )Fµν(γ)A(S → V γ). (10)

Under the VMD, the above A(S → V γ) is given by

A(S → V γ) ≃
∑

V ′=ρ0, ω, φ, ψ

[

XV ′(0)

m2
V ′

]

A(S → V V ′).

(11)
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When the D+
s0(2317) is assigned to the F̂+

I ∼ [cn][s̄n̄]I=1,

the amplitude A(F̂+
I → D∗+

s γ) is dominated by the ρ0-
meson pole because of the OZI rule,

A(F̂+
I → D∗+

s γ) ≃
[

Xρ(0)

m2
ρ

]

A(F̂+
I → D∗+

s ρ0). (12)

Using the modified SUf(4) symmetry for the SV V ′ ver-

tices, we obtain 2A(F̂+
I → D∗+

s ρ0) = A(φ → δ̂s0ρ0)β′,
where β′ denotes the suppression factor (like the β be-
fore) arising from the overlapping of the color and spin
wave-functions. We again assume the limiting case, i.e.,
the full suppression for A(F̂+

I → D∗+
s ρ0) and no suppres-

sion for A(φ→ δ̂s0ρ0), so-called the fall-apart amplitude.
However, since in this case we must take the |{qq̄}{qq̄}〉
as a pair of vector states, |β′|2 = 1

4
[9]. Inserting

|A(φ → δ̂s0ρ0)| ≃ 0.020 MeV−1 (13)

obtained from Γ(φ→ a0(980)γ)exp = 0.32±0.03 keV [10]
and |β′|2 = 1

4
, we have

Γ(F̂+
I → D∗+

s γ) ≃ 45 keV. (14)

Therefore, using Eq.(5), the ratio reads

Γ(F̂+
I → D∗+

s γ)

Γ(F̂+
I → D+

s π0)
∼ 0.005, (15)

which satisfies well the constraint (1).
When the D+

s0(2317) is assigned to the conventional
scalar F+

0 , the amplitude A(F+
0 → D∗+

s γ) is given by

A(F+
0 → D∗+

s γ) ≃
[

Xφ(0)

m2
φ

]

A(F+
0 → D∗+

s φ)

+

[

Xψ(0)

m2
ψ

]

A(F+
0 → D∗+

s ψ) (16)

under the VMD. The SUf(4) symmetry for the SV V ′

vertices leads to 2A(F+
0 → D∗+

s φ) = 2A(F+
0 →

D∗+
s ψ) = A(χc0 → ψψ). From the measured Γ(χc0 →

ψγ)exp = 182 ± 15 keV [10], we have |A(χc0 → ψψ)| ≃
0.102 MeV−1, and thus

Γ(F+
0 → D∗+

s γ) ≃ 50 keV. (17)

When the D+
s0(2317) is assigned to the iso-singlet

scalar four-quark meson, F̂+
0 ∼ [cn][s̄n̄]I=0, the ampli-

tude A(F̂+
0 → D∗+

s γ) is given by the ω-meson pole,

A(F̂+
0 → D∗+

s γ) ≃
[

Xω(0)

m2
ω

]

A(F̂+
0 → D∗+

s ω) (18)

under the VMD. Using the modified SUf (4) symme-

try with the suppression factor β′, A(F̂+
0 → D∗+

s ω) =

A(φ → δ̂s0ρ0)β′. Inserting this relation with Eq. (13)
and |β′|2 = 1

4
into Eq. (18), we obtain

Γ(F̂+
0 → D∗+

s γ) ≃ 4.7 keV, (19)

which is smaller by one order of magnitude than Eq. (14)
since Xω(0) ≃ 1

3
Xρ(0).

Next we discuss the isospin non-conserving decays.
The amplitude for the D∗+

s → D+
s π

0 is approximately
written in the form,

M(D∗+
s → D+

s π
0) ≃

(

m2
D∗

s

−m2
Ds

fπ0

)

〈D+
s |Aπ0 |D∗+

s 〉

(20)
as in Eq. (2). Here we assume that the isospin non-
conservation is caused by the η-π0 mixing, i.e., Aπ0 →
Aπ0 + ǫAη, (|ǫ| ≪ 1), so that we replace 〈D+

s |Aπ0 |D∗+
s 〉

by ǫ〈D+
s |Aη|D∗+

s 〉. The axial charge Aη is given by
Aη = cosΘ · Aηn − sinΘ · Aηs , where Aηn and Aηs are
the {nn̄} and {ss̄} components of Aη, respectively. In
the asymptotic matrix element of Aη, only the matrix
element of Aηs can survive due to the OZI rule and the
asymptotic SUf (4) symmetry leads to 〈D+

s |Aηs |D∗+
s 〉 =

1
2
〈π+|Aπ+ |ρ0〉. From these relations,

〈D+
s |Aπ0 |D∗+

s 〉 = −1

2
ǫ sin Θ · 〈π+|Aπ+ |ρ0〉. (21)

The size of the 〈π+|Aπ+ |ρ0〉 can be estimated to be
|〈π+|Aπ+ |ρ0〉| ≃ 1.0 [12] from the measured rate, Γ(ρ →
ππ)exp ≃ 150 MeV [10]. Inserting Eq. (21) with Θ ≃
35◦ (θP ≃ −20◦) as before into Eq. (20) and using the
measured branching ratios for the D∗+

s → D+
s π

0, D+
s γ

decays [10] and Eq. (9), we get

|ǫ| ∼ 1.0 × 10−2, (22)

which is compatible with the second order QED effect as
expected before.

With the help of the value of ǫ, we finally consider two
cases of the isospin non-conserving decay, D+

s0(2317) →
D+
s π

0; (i) D+
s0(2317) as the conventional scalar F+

0 ∼
{cs̄} and (ii) D+

s0(2317) as the scalar four-quark F̂+
0 ∼

[cn][s̄n̄]I=0. The amplitudes for the S+ (= F+
0 or F̂+

0 ) →
D+
s π

0 decays can be approximated in the form,

M(S+ → D+
s π

0) ≃
(

m2
S −m2

Ds

fπ0

)

〈D+
s |Aπ0 |S+〉 (23)

as in Eq. (2). Since such a decay is assumed to proceed
through the π0-η mixing as discussed before, we replace
the matrix elements, 〈D+

s |Aπ0 |F+
0 〉 and 〈D+

s |Aπ0 |F̂+
0 〉,

by the OZI-allowed −ǫ sinΘ · 〈D+
s |Aηs |F+

0 〉 and

ǫ cosΘ · 〈D+
s |Aηn |F̂+

0 〉, respectively.
(i) The asymptotic SUf(4) symmetry leads to
〈D+

s |Aηs |F+
0 〉 = 〈K+|Aπ+ |K∗0

0 (1430)〉, whose size
is estimated to be |〈K+|Aπ+ |K∗0

0 (1430)〉| ≃ 0.29 from
the experimental data, Γ(K∗0

0 → K+π−)exp = 182 ± 24



4

MeV [10]. Here we have assumed that K∗0
0 (1430) is the

conventional 3P0 {ds̄} state [10]. Using the above result
on the asymptotic matrix elements, the value of |ǫ| in
Eq. (22) and θP = −20◦, we have

Γ(F+
0 → D+

s π
0) ∼ 0.6 keV, (24)

which is much smaller than Eq. (17) as expected.
(ii) The modified asymptotic SUf(4) symmetry leads to

2〈D+
s |Aηn |F̂+

0 〉 = 〈π+|Aηs |δ̂s+〉β. Taking |β|2 = 1
12

and

|〈π+|Aηs |δ̂s+〉| =
√

1/2|〈ηs|Aπ− |δ̂s+〉| ∼ 0.6 estimated
before, we obtain

Γ(F̂+
0 → D+

s π
0) ∼ 0.7 keV, (25)

which is lower than Eq. (19). Eventually, the ratios of
(17) to (24), and (19) to (25) exceed one significantly and
thus we conclude that the assignments of the D+

s0(2317)
to the I = 0 states are not favored.

In summary, we have studied the D+
s0(2317) →

D+
s π

0, D∗+
s γ decays, and have seen the followings. (a)

The assignment of the D+
s0(2317) to the iso-triplet four-

quark meson, F̂+
I , is consistent with the experimental

constraint Eq. (1) as seen in Eq. (15). (b) The assign-
ments of the D+

s0(2317) to the iso-singlet mesons (the

four-quark F̂+
0 and the conventional F+

0 ) are inconsis-
tent with the measured constraint. This is quite natural

because the isospin non-conservation has been expected
to be of the second order effect of QED. Thus, the assign-
ment of the D+

s0(2317) to the four-quark meson, [qq][q̄q̄],
with (I, I3) = (1, 0) is favored by the measurements of
its D+

s π
0 and D∗+

s γ decays, while its neutral and dou-
bly charged partners have not been observed [21]. The
observation, however, does not seem to reject promptly
the assignment of the F̂I with I = 1 to the D+

s0(2317). It
is because it will be closely associated with the produc-
tion mechanism of the F̂I mesons, whether the different
charged states should be equally observed or not in the
experimental processes. The problem with the produc-
tion mechanism of the D0,+,++

s0 will be left as one of our
future subjects.
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